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In this work, we propose a new threshold multi split-row algorithm in 
order to improve the multi split-row algorithm for LDPC irregular 
codes decoding. We give a complete description of our algorithm as well 
as its advantages for the LDPC codes. The simulation results over an 
additive white gaussian channel show that an improvement in code 
error performance between 0.4 dB and 0.6 dB compared to the multi 
split-row algorithm.
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1 Introduction

Low-density parity check (LDPC) codes are a class of
linear block codes, which were first, introduced by
gallager in 1963 [1]. As soon as they were re-invented
in 1996 by mackay [2], LDPC codes have received a lot
of attention because their error performance is very
close to the shannon limit when decoded using itera-
tive methods [3]. They have emerged as a viable op-
tion for forward error correction (FEC) systems and
have been adopted by many advanced standards, such
as 10 gigabit ethernet (10GBASET) [4], [5] and digi-
tal video broadcasting (DVB-S2) [6], [7]. In addition,
the generations of WiFi and WiMAX are considering
LDPC codes as part of their error correction systems
[8], [9].

In the present paper, we propose the threshold
multi split-row method for decoding irregular low-
density parity-check (LDPC) codes [10], to have better
performance in terms of bit error rate. We will apply
the thresholding algorithm in [11] for multi split row
of irregular LDPC codes[10].

The proposed split-row decoder [10],[11] splits the
row processing into two or multiple nearly indepen-
dent partitions. Each block is simultaneously pro-
cessed using minimal information from an adjacent
partition. The key idea of split-row is to reduce
communication between row and column processors
which has a major role in the interconnect complex-

ity of existing LDPC decoding algorithms such as sum
product (SPA) [3] and minsum (MS) [12].

This paper introduces threshold multi split-row
decoding which significantly reduces wire intercon-
nect complexity and considerably improves the er-
ror performance compared to non-threshold multi-
split decoding [10]. The paper is organized as fol-
lows: Section II reviews the sum product and min-
sum, split-row and split-row threshold decoding al-
gorithms. Threshold multi-split-row and its error per-
formance result is presented in section III. Finally, the
conclusion is in section IV.

2 Previous algorithms

2.1 Sum Product Decoding(SPD)

The SPD assumes a binary code word (x1,x2, ...,xN )
transmitted using a binary phase-shift keying (BPSK)
modulation. The sequence is transmitted over an ad-
ditive white gaussian noise (AWGN) channel and the
received symbol is (y1, y2, ..., yN ).
We define:
V(i) = {j : Hij = 1} as the set of variable nodes which
participate in the check equation i.
C(j) = {i : Hij = 1} as the set of check nodes which par-
ticipate in the variable node j update.
Also
V(i) \ j denote all variable nodes in V(i) except node j.
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C(j) \ i denote all check nodes in C(j) except node i.
Moreover, we define the following variables used in
this paper.

λj : is defined as the information derived from the
log-likelihood ratio of received symbol yj .

λj = log(P (xi = 0|yj )/P (xi = 1|yj )) = (2yj )/σ
2 (1)

where σ2 is the noise variance. αij is the message
from check node i to variable node j. This is the row
processing output. βij is the message from variable
node j to check node i. This is the column processing
output.

The sum product algorithm decoding as described
by mohsenin and Baas [13], can be summarized in the
following four steps:

2.1.1 Initialization

For each i and j, initialize βij to the value of the log-
likelihood ratio of the received symbol yj , which is
λj . During each iteration, αβ messages are computed
and exchanged between variables and check nodes
through the graph edges according to the following
steps numbered 2-4.

2. Row processing or check node update
Compute αij messages using β messages coming from
all other variable nodes connected to check node Ci ,
excluding the β information from Vj :

αij =
∏

j ′∈V (i)\j

sign(βij ′ )×φ(Σj ′∈V (i)\jφ(|βij ′ |)) (2)

where the non-linear function

φ(x) = −log(tanh(|x|/2)) (3)

The first product term in the equation that update
the parameter, is called the parity (sign) update and
the second product term is the reliability (magnitude)
update.

3. Column processing or variable node update
Compute βij messages using channel information λj
and incoming, messages α; from all other check nodes
connected to variable node Vj , excluding check node
Ci .

βij = λj +Σi′∈C(j)\iα(i′ j) (4)

4. Syndrome check and early termination
When the column processing is finished, every bit
in column j is updated by adding the channel infor-
mation λj and α, messages from neighboring check
nodes.

zj = λj +Σi′∈C(j)α(i′ j) (5)

From the updated vector, an estimated code vector
X̂ = {x̂1, x̂2, ..., x̂N } is calculated by:

x̂i =
{

1 if zi ≤ 0
0 if zi > 0 (6)

If H × x̂t = 0 then X̂ is a valid codeword and there-
fore the iterative process has converged and decoding
stops. Otherwise, the decoding repeats from step 2
until a valid codeword is obtained or the number of
iterations reaches a maximum number, which termi-
nates the decoding process.

2.2 MinSum Decoding

The check node or row processing stage of SP decod-
ing can be simplified by approximating the magni-
tude computation in Eq. 2 with a minimum function.
The algorithm using this approximation is called min-
sum (MS):

αij =
∏

j ′∈V (i)\j

sign(βij ′ )×Minj ′∈V (i)\j (|βij ′ |) (7)

In MS decoding, the column operation is the same
as in SP decoding. The error performance loss of MS
decoding can be improved by scaling the check (α)
values in Eq. 7 with a scale factor S ≤ 1 which nor-
malizes the approximations [14], [15].

αij = S ×
∏

j ′∈V (i)\j

sign(βij ′ )×Minj ′∈V (i)\j (|βij ′ |) (8)

2.3 Split Row and Split Row Threshold
Decoding

Recall that a standard message passing two-phase al-
gorithm consists of a check node update followed by
a variable node update as shown in Fig. 1 (a). The ba-
sic idea in split-row [10], [16] and split-row threshold
[11], is to divide the check node processing into two or
multiple nearly-independent partitions. Each check
node processor, simultaneously, computes a new mes-
sage while using minimal information from its ad-
jacent partitions. Split-row is illustrated in Fig. 1 (b)
showing how the check node processing is partitioned
into two blocks. A single bit of information (Sign) for
each check node processor must be sent between par-
titions to improve the error performance.

Figure 1. Block diagram of (a) standard two-phase decoding (b)

split-row (c) split-row threshold block diagram.
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The loss error performance is 0.5-0.7 dB of split-row
that is the major drawback, when compared to min-
sum normalized and SPA decoders. This performance
degradation is dependent on the number of check
node partitions. For minsum split-row each partition
has no information of the minimum value of the other
partition, and a Sign signal is sent to minimize the er-
ror due to incorrect sign information of the true check
node output α.

The split-row threshold algorithm mitigates the er-
ror caused by incorrect magnitude by providing a sig-
nal, threshold en, which indicates whether a partition
has a minimum less than a given threshold (T).This
causes all check nodes to take the min of their own lo-
cal minimum or T. Thus, any large deviations from
the true minimum because of the partitioning are
reduced, which then makes multi-split implementa-
tions feasible.

Figure 1 (c) shows the additional single bit sig-
nal (threshold en ) added to the original split-row ar-
chitecture by the split-row threshold algorithm. This
signal allows the split-row to remain essentially un-
changed while adding some extra logic and minimal
wiring to improve error significantly [11].

Therefore, the split-row architectures reduce the
communication between check node and variable
node processors, which is the major cause of the inter-
connect complexity found in existing LDPC decoder
implementations.In addition, the area of each check
node processor will be reduced. However, note that
the variable node operation in the SPA, minsum, split-
row and split-row threshold algorithms are all identi-
cal. Thus, the logic of the variable node processor is
left unchanged.

3 Threshold Mutli Split Row De-
coding

3.1 Threshold Mutli Split Row Algorithm

In order to increase the parallelism and reduce
the complexity of the decoder, the multi-split-row

method divides the lines of the systematic submatrix
Hs into Spn blocks called split-Spn. This approxi-
mation requires of the wire to correctly process the
sign bits between the blocks. For the threshold multi
split-row method, Each partition sends the status of
its local minimum against a threshold to the next par-
tition with a single wire, called T hreshold ensp.

The block diagram of threshold multi split-row
decoding with Spn partitions, highlighting the sign
and T hreshold ensp passing signals, is shown in Fig.
2. These are the only wires passing between the par-
titions [17]. In each partition, local minimums are
generated and compared with a threshold T simulta-
neously. If the local minimum is smaller than T then
the T hreshold ensp signal is asserted high. The mag-
nitudes of the check node outputs are finally com-
puted using local minimums and the T hreshold ensp
signal from neighboring partitions.
If a local partition

′
s minimums are larger than T , and

at least one of the T hreshold ensp signals is high, then
T is used to update its check node outputs. Other-
wise, local minimums are used to update check node
outputs.

in the threshold multi split-row algorithm, as
shown in Eq. (10) and (11), the first and second
Mins are compared with a predefined threshold, and a
single-bit threshold-enable (T hreshold en out) global
signal is sent to indicate the presence of a potential
global minimum to other partitions.

3.1.1 Initialization

The first and second minimums are determined for
each partition according to the following relation-
ships:

Minj ′∈V (i)\j (|βij ′ |) =
{
Min1i ; if ; j , argmin(Min1i)
Min2i ; if ; j = argmin(Min1i)

(9)

Figure 2. Block diagram of threshold multi split row decoding with Spn partitions.
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Min1i =minj∈V (i)(|βij ′ |) (10)

Min2i =minj ′′∈V (i)\argmin(min1i )
(|βij ′′ |) (11)

to execute the algorithm one needs the number
of partitions and the threshold value T. Finds
T hreshold ensp(i) out(i∓1) for the ith partition of a
spn-decoder.

Algorithm 1 Threshold Multi Split-Row Algorithm

1-if Min1i ≤ T and Min2i ≤ T then
T hreshold ensp(i) out(i ∓ 1) = 1

Minj′ ∈V (i)\j (|βij′ |) =
{
Min1i if j , argmin(Min1i )
Min2i if j = argmin(Min1i )

(12)

2- if Min1i ≤ T and Min2i ≥ T then
T hreshold ensp(i) out(i ∓ 1) = 1
T hreshold ensp(i + 1) == 1 or
T hreshold ensp(i − 1) == 1 then

Minj′ ∈V (i)\j (|βij′ |) =
{
Min1i if j , argmin(Min1i )
T if j = argmin(Min1i )

(13)

else

Minj′ ∈V (i)\j (|βij′ |) =
{
Min1i if j , argmin(Min1i )
Min2i if j = argmin(Min1i )

end if
3- else if Min1i ≥ T and (T hreshold ensp(i + 1) == 1 or
T hreshold ensp(i − 1) == 1) then
T hreshold ensp(i) out(i ∓ 1) = 0

Minj′ ∈V (i)\j (|βij′ |) = T (14)

4- else
T hreshold ensp(i) ou(i ∓ 1) = 0

Minj′ ∈V (i)\j (|βij′ |) =
{
Min1i if j , argmin(Min1i )
Min2i if j = argmin(Min1i )

(15)

end if.

The kernel of the threshold multi split-row algo-
rithm is given in Algorithm 1. As shown, four condi-
tions will occur:
Condition 1: both Min1 and Min2 are less than
threshold T. In this case these 2 parameters are used
to calculate α messages according to Eq.(12). In ad-
dition, T hreshold ensp(i) out(i∓1), which represents
the general threshold-enable signal of a partition with
two neighbors, is asserted high indicating that the
least minimum (Min1) in this partition is smaller than
T.
Condition 2: only Min1 is less than T. As Condi-
tion 1 T hreshold ensp(i) out(i∓1)= 1. If at least one
T hreshold ensp(i ∓ 1) signal from the nearest neigh-
boring partitions is high, indicating that the local
minimum in the other partition is less than T, then
we use Min1 and T to calculate α messages according
to Eq.(13). Otherwise, we use Eq.(12).
Condition 3: when the local Min1 is larger than T and
at least one T hreshold ensp(i∓1) signal from the near-
est neighboring partitions is high; thus, we only use
T to compute all α messages for the partition using
Eq.(14).

Condition 4: when the local Min1 is larger than T and
if the T hreshold ensp(i∓1) signals are all low; thus, we
again use Eq.(12).
The variable node operation in minsum threshold
multi split-row algorithm is identical to the minsum
normalized and minsum multi split-row algorithms.

3.2 BER Simulation Results

The error performance simulations presented here as-
sume an additive white gaussian noise (AWGN) chan-
nel with binary phase-shift keying (BPSK) modula-
tion. The maximum number of iterations is set to
Imax = 7 or earlier when the decoder converged [11].
We fix the threshold Imax to satisfy a tradeoff between
the performance correction and the speed of the de-
coder.

The following labelings are used for the figures:
“MS Standard” for normalized minsum, “MS Multi
Split-Row” for the method minsum multi split-row al-
gorithm, and “S” for the scaling factor. The perfor-
mances of irregular LDPC codes are illustrated in the
figure given below.

The error performance depends strongly on the
choice of threshold T values and the scaling factor S.
The optimum values for T and S are obtained by em-
pirical simulations as illustrated in the following fig-
ures.

The figure 3 shows the simulation to determine
experimentally the threshold for minsum threshold
multi split-row of the LDPC code (6,18) (1536,1152).
with:
Code length N= 1536.
Information length K=1152.
Column weight Wc = 6 which is the number of ones
per column.
Row weight Wr =18 which is the number of ones per
row.
The threshold optimum value for an SNR ranging
from 2.7 dB to 4.2 dB, with the value of the normal-
ization factor S = 0.25 obtained in figure 6, is 1.5.

Figure 3. BER (Bit error rate) performance in function of the
threshold for different SNR (Signal to noise ratio) values.

Figures 4 and 5 show the simulation to determine
experimentally the scaling factor for normalized min-
sum and minsum multi split-row, respectively, of the
LDPC code (6,18) (1536,1152) . Optimal scale factor,
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for normalized minsum, is 0.6. And optimal scale fac-
tor, for minsum multi split-row, is 0.2.

Figure 4. BER (Bit error rate) performance in function of the scale
factor using normalized minsum for different SNR (Signal to Noise
Ratio) values.

Figure 5. BER (Bit error rate) performance in function of the Scale
factor using minsum multi split-row for different SNR (Signal to
noise ratio) values.

Figure 6 shows the simulation to determine exper-
imentally the scaling factor for minsum threshold
multi split-row of the LDPC code (6,18)(1536,1152).
Optimal scale factor is 0.25 with the threshold T=1.5.

Figure 6. BER (Bit error rate) performance in function of the scale
factor using minsum threshold multi split-row for different SNR
(Signal to noise ratio) values.

Figure 7 shows the error performance results for a
(6,18) (1536,1152) LDPC code for different decoding
algorithms (minsum normalized, minsum multi split-
row and minsum threshold multi split-row). The code
rate is R=0.75 and the maximum number of iteration
is set to Imax = 7, with threshold values obtained in
Fig.3 and scale factors obtained in Fig.4, Fig.5 and
Fig.6.

Figure 7. BER performance of (6,18) (1536,1152) irregular code
using various decoding algorithms.

As shown in the figure, minsum threshold multi split-
row with optimal threshold T = 1.5 performs about
0.6 dB better than minsum multi split-row and is
only 0.7 dB away from MinSum normalized at BER =
6.10−7.

The minsum threshold multi split-row algorithm
utilizes a threshold-enable signal to compensate for
the loss of min() interpretation information in multi-
split-row algorithm. It provides at least 0.6 dB error
performance over the multi-split-row algorithm with
Spn = 4. Partitioning the parity matrix in Spn blocs
allows us to increase the decoder’s parallelism. There-
fore, the partitions are performed simultaneously and
we obtained a parallel decoder. That means,the com-
plexity decreases and the decoding becomes faster.

As shown in Figure 7, the better performance gap
indicated between the minsum threshold multi split-
row and minsum multi split-row algorithm revert to
the information passed from one partition to another
(Threshold ensp) in algorithm threshold multi split-
row, which reduces difference between the local mini-
mum in each partition and the first and second global
minimums.

4 Conclusion

In this paper we have extended threshold multi split-
row decoding method used for regular LDPC code to
the irregular LDPC code. The aims was to improve the
errors performances of the decoder. Simulation re-
sults show that the threshold multi split-row outper-
forms the multi split-row algorithm for 0.6 dB while
maintaining the same level of complexity (only the
comparison between the threshold and the first and
second minimums is added). Our simulation results
show that for a given LDPC code keeping threshold T
constant at any SNR does not cause any error perfor-
mance degradation.
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